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Almtraet--We have considered asymptotic solutions at large bubble Reynolds number to the energy 
transport equation describing the spatial variation of the "granular temperature" in the flow field around 
a single bubble in a gas fluidized bed. The granular temperature represents the mean peculiar kinetic energy 
of the particle phase, and is necessary in a "complete" description of the fluid-particle transport 
phenomena. In the present case of singie-bubble motion, the energy source is from the particle-phase 
viscous dissipation term. At large bubble Reynolds numbers, viscous effects are confined to a thin 
boundary-layer region, as in the case of a gas bubble in a liquid. It is demonstrated that the Prandtl 
number for this problem is O(1), or that the momentum and "thermal" particle-phase boundary layers 
are of the same order of magnitude. The thermal boundary-layer equation for the granular temperature 
is subsequently derived and solved analytically. It is assumed that outside the thermal boundary layer, 
where viscous effects are negligible, the granular temperature is zero. From the mathematical solutions 
to the energy transport equation associated with single-bubble motion, including viscous dissipation terms 
and utilizing relationships from the kinetic theory of dense gases, we have given analytical expressions 
for the effective particle-phase shear viscosity and the effective particle-phase hydrostatic pressure, the two 
properties which characterize the kinetic component of the particle-phase pressure tensor. The theoretical 
results show remarkably good agreement with reported experimental measurements of the above 
properties. 

1. I N T R O D U C T I O N  

In a system of fluidized particles, the effective particle-phase viscosity and effective particle-phase 
pressure, the properties commonly used to represent the pressure tensor of the particle phase, are 
believed to play an important role in both the formation and steady motion of bubbles (e.g. 
Buyevich 1975; Weiland 1976; Homsy et al. 1980; Martin-Gautier & Pyle 1976; Liu 1983; Nadkarni 
1985). A large effective viscosity of the particle phase in a gas fluidized bed is considered responsible 
for the shape of a fluidization bubble, by comparison with the shape-viscosity relationship for a 
gas bubble in a liquid (Davidson et aL 1977). One may also show, by asymptotic analyses of the 
governing transport equations, the dependence of other phenomena associated with bubble motion 
(such as patterns of gas and solid motion, bubble rise velocity and gas pressure distribution) on 
the bubble Reynolds number, defined on the basis of an effective particle-phase velocity (e.g. 
Weiland 1976; Nadkarni 1985). 

In general, the total particle-phase pressure tensor in a fluid-particle system is thought to be 
composed of two parts, namely: one due to the force exerted by the surrounding fluid phase; and 
a second contribution due to direct interparticle interactions, i.e. collisions, electrical attractions 
and repulsions etc. [see the discussion in Rietema (1982)]. Tile former effect includes hydrodynamic 
interactions between particles and is, consequently, a configurationaUy-dependent quantity. The 
latter contribution has been "modeled" using dense-gas kinetic theory formulations [see, for 
example, Lun et al. (1984) and the references cited therein] and, thus, depends upon the local 
particle velocity-space distribution function. The applicability of kinetic theory descriptions to 
particles immersed in a host fluid may be at least partially quantified by analysis of the particle 
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Stokes number, Nst = z/to, where r is the particle relaxation time and to is a characteristic time scale. 
The kinetic theory expressions, based upon particle motion in a vacuum, are applicable at large 
particle Stokes number (i.e. larger particle relaxation times). Assuming r = fl-i, where/~ is the 
Stokes friction coefficient divided by the particle mass, larger particle Stokes numbers can be shown 
to be more likely when the host fluid is a gas rather than a liquid. For example, in the case of 
fluidized particles, the characteristic time scale may be assumed to be given by the average 
interparticle spacing divided by the average particle speed, which is typically O(10 -2) s. Consid- 
ering a 150/~ m particle in a gas at standard conditions, we also have zO (10-~) s, giving NstO (101). 
In a liquid, on the other hand, TO(10-3), shedding doubt on classical kinetic theory analogies for 
such systems. [A kinetic treatment applicable to liquid-particle systems may be found in a series 
of papers by Buyevich (1971, 1972a, b)]. In the case of collisions between fluidized particles, we may 
also rely upon the experimental results of Massimilla & Westwater (1960), as discussed by Meissner 
& Kusik (1970), to assume elastic collisions between particles. Consequently, we may write the 
kinetic contribution to the particle-phase stress tensor, pk, as (Hirschfelder et al. 1964, Chap. 9). 

pk = _[pp + (2/.tp +/Cp)(V'v)] I + 2#p sym (Vv), for Pf > p~n, [1] 

where v is the local mass averge velocity of the particles, pp is the particle-phase pressure,/~ and 
Xp are the coefficients of the effective particle-phase shear viscosity and bulk viscosity, respectively, 
and P ~  is the minimum fluid-phase stress tensor required to set the particles in motion. It is clear 
that the rheology of the particle phase in a fluidized bed exhibits the presence of a "yield stress' 
necessary for the transition from a stagnant particle phase in a packed bed to a fluidized state. In 
the present study, we will always assume a fluid-like state of the particle phase. Equation [1] may 
be used in the solution to the transport equations for gas-particle systems at large Stokes numbers 
provided that the particle-phase properties #p, rp and pp are specified. As discussed in detail by 
Lun et al. (1984), it therefore becomes necessary to introduce the so-called "granular temperature" 
and associated particle-phase energy transport equation. This equation describes the spatial and 
temporal variations in the mean peculiar kinetic energy of the particles upon which the 
particle-phase properties gp, xp and pp depend. 

It is the objective of the present study to obtain analytical expressions for the granular 
temperature, associated with single-bubble motion in an unbounded gas fluidized bed, from the 
solution to the particle-phase energy balance equation. The exact magnitudes of the particle-phase 
viscosity coefficient and particle-phase pressure associated with single-bubble motion have been the 
subject of much controversy and debate over the years (e.g. the majority of the studies on bubble 
motion neglect these terms entirely). Typical values of the bubble Reynolds number in a fluidized 
bed, defined on the basis of the bubble rise velocity and effective particle-phase properties, are large 
[~ 10 to 500; see Grace (1970)]. Therefore, we consider asymptotic solutions to the energy balance 
equation at large bubble Reynolds number. Under these conditions, viscous effects are confined 
to a thin region on the bubble surface, and both the momentum and thermal boundary-layer 
equations must be considered. Assuming that the particle-phase transport properties are constant 
in the boundary layer, it can be readily shown that Moore's (1963) solution for the fluid momentum 
boundary layer on a gas bubble in a liquid is applicable to the problem of bubble motion in 
fluidized particles (Appendix A). These resulting velocity fields are used in the thermal boundary- 
layer equations to obtain the granular temperature field near the bubble surface. Expressions for 
the granular temperature are presented for both the spherical and cylindrical bubbles, the latter 
being commonly studied in laboratory experiments. These expressions are then used to estimate 
values of the mean particle-phase shear viscosity and effective particle-phase pressure near the 
bubble surface. Finally, comparisons with relevant experimental data are made. 

2. THE PARTICLE-PHASE ENERGY 
TRANSPORT EQUATION APPLIED TO SINGLE-BUBBLE 

MOTION IN AN UNBOUNDED FLUIDIZED BED 

In the analysis of the single-bubble motion problem, we make the following assumptions: 

(a) The particle volume fraction, 4, is assumed uniform in the dense phase external 
to the bubble. This assumption also implies that the particle phase is incom- 
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pressible and the continuity equation 

V . v  = 0 [2] 

is applicable, where v is the local mean velocity of the particle phase. 
(b) The effective particle-phase viscosity, #p, and conductivity, kp, are assumed 

constant in the dense phase surrounding the bubble. 
(c) We adopt a coordinate system which moves at the bubble velocity, and 

consequently consider the steady motion of the particles around the void or 
bubble. 

(d) Additionally, any wall or end effects are neglected by considering single-bubble 
motion in an unbounded fluidized bed. 

Under the above set of assumptions, and with the Newtonian form of the stress tensor in the 
particle phase, [1], the following general energy transport equation can be written [see, for example, 
Hirschfelder et  al. (1964, Chap. 9)]: 

~bpsCp(V" V Tp) = kpV2Tp + 2~p(ep. Vv), [3] 

where Tp is the so-called "granular temperature", defined by 

3 kB T~, = ½ mp E {I Vp -- v)}. [4] 

In the above definition, we have assumed all the particles to be identical spheres, mp being the mass 
of each particle, ks is the Boltzrnann constant, and % is the velocity of an individual particle. The 
term on the r.h.s, of [4] is the mean peculiar kinetic energy of the particles where the symbol "E"  
denotes an expected value. Also note in [3] that p, is the solid material density, Cp is the "energy" 
capacity of the particle phase per unit mass, which for pure translational motion of the particles 
is given by 

3 kn 
Cp = 2 mp [5] 

and, finally, e~ is the rate-of-strain tensor in the particle phase, 

ep : Vv + ev. [6] 

Applied to the problem of bubble motion, the boundary conditions necessary for the solution of 
[3] are given by 

dTp 
a r , = 0  at r" = rb, V O, [7] 

and 

Tp--,0 as r - - , o o ,  VO, [81 

where r '  represents the radial coordinate with reference to the bubble center of gravity, 0 is the 
angular coordinate, which is taken as zero along the vertical axis of symmetry in the upper half 
of the bubble and increases in the clockwise direction, and rb is the radius of the bubble which is 
either spherical or circular cylindrical. Equation [7] is derived from the fact that there is no normal 
particle mass or energy flux, across a "sharp" bubble surface. Equation [8] is representative of the 
fact that far from the bubble surface, where uniform or minimum fluidization conditions prevail, 
the particles are merely suspended in a fluid-particle dispersion and the mean peculiar velocity of 
the particles is assumed to be zero. 

The energy transport equation [3] may be written in dimensionless form as 

(V • V Tp) = Re---~r (V2 Tp) -~- ~-~e (op: VV ) [9] 

with the boundary conditions 

~Tp=0 at r = l , V 0 ,  [10] 
dr 

M F. 13/4~D 
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and 
T ~ 0  as r ~ , ¥ O .  

The dimensionless variables and groups in [9] are defined as 
r '  

r ~ - -  
rb 

¥ 
V ~ - - ~  

U b 

e,, = ub e;,  
rb 

3 
Tp - gkBTp 

mpU~ ' 

Re = rbub~ps 
gp 

and 

[ll] 

[121 

[131 

[141 

[151 

[16] 

[171 Pr : Cp~p 
kp ' 

where Ub is the bubble rise velocity. 
In the next section we consider asymptotic solutions to [9] at large bubble Reynolds numbers. 

In such flows viscous effects are confined to thin regions along the bubble surface, giving rise to 
both a momentum and thermal boundary layer. As shown in Appendix A, the momentum 
boundary-layer equations for the particle phase follow from Moore's (1963) solution for a gas 
bubble in a liquid. It will also be demonstrated that particle-phase viscous effects give rise to 
granular temperature gradients in the thermal boundary layer, serving as the only "source" for 
particle-phase energy production. Consequently, outside the thermal boundary layer, where viscous 
effects are negligible, the particle-phase energy or granular temperature may be assumed to be zero. 

For completeness, we note that the problem of viscous dissipation in homogeneous fluids has 
been recently treated by Stewart & McCeUand (1983) using local similarity variable transforms. 
Also, Acrivos & Goddard (1965) discussed the problem with respect to the Green's function 
method employed in their solutions to the thermal boundary-layer equation in a homogeneous fluid 
in the absence of viscous dissipation. Here we employ integral transform methods to obtain 
first-order solutions for the granular temperature behavior with viscous dissipation. 

3. THE THERMAL BOUNDARY-LAYER EQUATION 

3.1. Spherical bubble 

Following the dense-gas kinetic theory (e.g. Hirschfelder et al. 1964), one may show that for pure 
translational motion of the particles and elastic particle-particle collisions, the Prandtl number, as 
defined in [17], is only a function of the particle volume fraction. The functional dependence is given 
by 

2fl  + ~bg(~)  + 0.76114~g(t~)] 2" 
Pr = ~ 1 + ~tkg(~b) + 0.75514~g(~b)] ~ ' 

where the function g(~b) is the contact equilibrium radial distribution function (see [65]). Typical 
values of the Prandtl number calculated from the above expression are 

and 

Pr (tk = 0.5) -- 0.387 

Pr (~ = 0.6) = 0.395. 
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Since the particle-phase Prandtl number, Pr, is O(I), for the large bubble Reynolds number 
analysis we define a smallness parameter, E, as 

I 
E = Re Pr" [18] 

Note that the product (Re Pr) is the particle-phase energy P6clet number, P6. The dimensionless 
velocity functions for the particle flow around a spherical bubble are given by (Moore 1963) 
(Appendix A) 

Vr= - - ( 1 - - ~ 3 ) C O S 0  +EIV~')(~, 0 ) + . . .  [19] 

and 

Vo=(l + ~r3)Sin 0 "Jr- EII/2V~I) (~, 0) -3 L . . . .  [20] 

where ~ = (r - 1)E/- 1/2 and E, = l/Re. Note that since PrO (1), we can consider E tO (~) in the analysis 
given below. Substitution of the above equations into the axisymmetdc spherical form of [9] gives 
the energy transport equation for the particle phase around a spherical bubble as 

l 

+ !EI'2v~"(~' ° ) + ' r  "" 1 °rp00 
/o2r 20rp+l o2rp coto0rp~ 

=~,~-~+;-~; ~-g0 r +  r ~ -  00 } 
9PrE 

+ 7 (3 cos 2 0 + sin 2 0) + HOT, [211 

where HOT represents higher-order terms in the viscous dissipation function. 
In the boundary layer (r ~ 1), we introduce the stretched variable z, defined by (e.g. Kevorldan 

& Cole, 1980) 

z = ( r - 1 ) E - %  m > 0 .  [221 

Using the above definition to replace r by z in [21], we obtain 

' aT b 
--COS 0 (3Z - -  6EmZ 2 +...) ~ + 3 sin 9 (1 - 2Emz + . . . )  

a 2 T  , 
- -  E '-2ra - - P  + (2E t -m  - -  2EZ + 2EI+mz 2 + . . . )  aT~ 

c~z 2 ~9z 

)(o2r~ or;~ 
+ (~ - 2~'+'2 + \ ao 2 + cot o - ~ )  

+ 9Pr (E - 8El+mZ + . . . )  (3 COS 2 0 + sin 2 0) + HOT. [23] 

The value of m is selected so that the convection and conduction terms are of the same order of 
magnitude as E --, 0; thus, 

I [24] 2 

This result also shows that the momentum and thermal boundary layers are of  the same order of  
thickness, consistent with Pr = O(1). Next we assume the following asymptotic expansion for T~: 

T~ = ~ E"T c"~ (z, O) [251 
,'t=O 
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The differential equation for T (°) is obtained from [23] as e ~ 0: 

_ dT (°) OTTO) 02/'(0) 
- 3 z  c o s 0 - - ~ -  z +23-sin0 'd0 - 0Z 2 ' 

The boundary conditions applicable to [26] are 

63 TIO) 
- -  = 0  at z = 0  

dz 

and 

E ---~ 0.  [26] 

[27] 

The boundary conditions for T* are 

T°)(z, 0) 
S ( z ) =  27Pr [32] 

Equation [30] may then be written in terms of T* and S as 

~2T* ~3T* ~ 0 "  - ~  az---- T- -I- 3z cos 0 ~ - 2 ~ sin 0 - 81Pr z (1 - cos 0) - 18Pr sin 2 0 = 0, [33] 

where the function S(z) follows from [30] written along the axis 0 = 0, i.e. 

d2S dS 
dz: + 3z -~z + 1 = 0 [34] 

with the following boundary conditions: 

dS 
d- -z=0  at z = 0  [35] 

and 

S ~ 0  as z ~ o o .  [36] 

aT* 
= 0  at z = 0  [37] 

dz 

and 

T * ~ 0  as z ~ o o .  [38] 

[31] 

For simplicity, let 

T*(z, O) = T°)(z, O) - T(I)(z, 0). 

T ( ° )~0  as z ~ o o  [28] 

Equation [27] follows from [10]. The boundary condition [28] is based on the assumption of 
negligible viscous effects outside the thermal and momentum boundary layers. 

One may show that the solution of [26] with the boundary conditions [27] and [28], is identically 
zero for all values of z and 0, i.e. 

T(°)(z, 0) = 0, e ~ 0. [29] 

The above result is also expected from physical considerations: the governing equation [26] does 
not contain the viscous dissipation source term. The following equation for T oJ is then obtained 
from [25] by taking the limit ~ --, 0: 

0 dT°) 3 aTC~) c~2T(~) 
- 3z cos dz + ~ sin 0 00 = 8z - - -T-  + 9Pr(3 cos 2 0 + sin 2 0). [30] 

Note that only the zero-order velocity components contribute to the first-order energy equation. 
The boundary conditions for T (I) are identical to [27] and [28] for 7 ~°). 

Equation [30] can be conveniently solved by writing in terms of  a new dependent variable, T*, 
defined as 
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The following additional condition results from the definition of the function T* from [31]: 

T * = 0  at 0 = 0  [39] 

Equation [34] may be solved numerically for S(z) with boundary conditions given by [35] and 
[36]. The results of a numerical solution are plotted in figure 1. The interfaeial value of the function 
S is required for the calculation of the granular temperature at the bubble surface, which is (see 
figure 1) 

S(0)-- 1.91. [40] 

The solution of [33] with boundary conditions [37]-[39] is obtained by application of the Fourier 
cosine transformation (see Appendix B). Note that the function dS/dz appearing in [33] is obtained 
by a single integration of [34] subject to condition [35]. The final result for the function T*(z, 0) 
may be written as 

T*(z, O) = PrF(~, 0), [411 

where ~ is a subcharacteristic of [33], given by 

= z sin 2 0. [42] 

The function F(~, 0) in [41] above is given by the following set of equations: 

F(¢, 0) = .I[ [A,(~, 0, t) + A2(¢, 0, t)] dt, [43] 

where 
¢2 

At(¢,O,t)= 6(2)½ expf ~[f(O)--f(t)]} 
{}[f(0)- f ( t ) ]}  ½ [44] 

and 

A2(~'O't)=lO---~sc-c°st);;G(a't)exp{-!3a2[f(O)-f(t)]}c°s(a¢)da'n sin 5 t 

and the functions f(t) and G(~, t) are given by 

_2 ~ " s  ~ cos(3t) f(t)-~--4.v t + 

[45] 

[46] 

3.0  

2.4 

1.8i  

N 
O9 

1.2 

0 .6  

ericol bubble 

0.0 I I I I 
0 3 8 9 12 15 

Z 

Figure 1. The function S(z) for spherical and circular cylindrical bubbles. 
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and 

~{Io ~ [ 3(x-:-y--:)l } 2  sin4t G(=, t) = exp jdy xcos(~tx)dx. [47] 

We note that the integrals in [46] and [47] rapidly go to zero as the respective independent variables, 
~t and x, increase. The above set of equations, [43]-[47], may therefore be solved using standard 
quadrature methods and by assigning sufficiently large numbers as upper limits of integration in 
[45] and [47]. 

An expression for the interfacial value of T* is obtained quite simply from [33] as 

T*(0, 0) = - 12Pr (1 - cos 0) [48] 

and the expression for the granular temperature, Tp, may be written, correct to first order, as 

Tp(z, O) = ET(z, O) 

= (Re Pr) -l [T*(z, 0) + T(Z)(z, 0)] 

= Re -l [F(z sin 2 0, 0) + 27S(z)]. [49] 

Along the 0 = 0 axis, T~ is given by 

Tp(z, 0) = 27Re-~S(z) [50] 

The angular variation in Tp along the bubble surface is obtained from [48] and [49] as 

Tp(0, 0) = 27Re -~ [S(0) - 4 (1 - cos 0)], [51] 

which is shown in figure 2. Note that [49] has the feature of yielding a granular temperature of 
zero for an infinite bubble Reynolds number (i.e. non-viscous flow). 

3.2. Circular cylindrical bubble 
A solution for the case of a circular cylindrical bubble may be obtained in a similar manner. 

Substituting the large bubble Reynolds number velocity functions 

g r = - -  1 - - ~  c o s O  J r  E IV~ I)(~, O )  J r . . .  [ 5 2 ]  

2 0  

16 

1.2 

v 0 8  

0.4 

O0 I I [ I I 
0 30 60 90 Izo 150 

8 (degrees) 

180 

Figure 2. Variation of the granular temperature along the surface of a spherical I~ubble. 
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a n d  

sin 0 + el V~ ~) (¢, 0) + . . .  [53] 

into the cylindrical geometric form of the energy transport equation [9], the following equation is 
obtained (of. [21]): 

E(I 1 
1 sinO + l-el/2V[l) (~' O) + " c90 

//~ 2Tp l~gTp 1 ~2Tp'~ 16Pre 
= e~-~-r2 +r-~--r + ~ - ~ ) + ~ +  HOT. [54] 

Following identical steps as for a spherical bubble, the relationship for the granular temperature, 
correct to first order, is obtained as 

Tp(z, 0) = (Re Pr)-l[T*(z, 0) + 16PrS(z)], [55] 

where T* follows from the solution to the equation 

dT* dT* dT* z dS dz---f+2zcosO-~z 2sin 0--~- - 3 2  (1 - c o s 0 )  d z  = 0  [56] 

with the boundary conditions given by [37]-[39]. For a circular cylindrical bubble, the function S(z) 
appearing in [55] and [56] is obtained from the solution to the equation (of. [34]) 

d2S 2z dS  
dz ---i + dz -I- 1 = 0. [57] 

The boundary conditions are again given by [35] and [36]. An expression for T* is obtained by 
the application of Fourier cosine transformations to [56], leading to 

T*(z, 0) = PrF(z sin 0, 0), [58] 

where 

F ( ¢ , 0 ) = _ 3 2  l - c o s t  G(~,t)exp - - ~ - ( c o s 0 - c o s t )  cos(a¢)d~ dt. [59] 
n s in  3 t 

The function G(~, t) in this case is given by 

fo{fo" [ (x2-y2)ldy}xc°s(~x)dx" [60] G(~, t) = exp sin ~ t 

Once again the integrals may be evaluated by standard quadrature methods. The function S(z) 
which represents the variation of the granular temperature along the axis 0 = 0, is obtained from 
a numerical solution of [57] with the boundary conditions [35] and [36]. The result is shown in 
figure 1 with the interfacial value of the function S(z) given as 

S(0) = 2.96 [61] 

and for the granular temperature field we obtain 

Tp(z, 0) = Re -t [F(z sin 0, 0) + 16S(z)]. [62] 

Equation [56] shows that, unlike the spherical bubble case, the granular temperature at the surface 
of a circular cylindrical bubble is uniform with respect to 0, i.e. 

Tp(0, 0) = 16Re-IS(0). [63] 
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4. ESTIMATION OF THE EFFECTIVE PARTICLE-PHASE 
VISCOSITY AND PRESSURE 

In this section we apply the above results to estimate the effective particle-phase viscosity and 
pressure associated with single-bubble motion. 

4.1. Effective particle-phase shear viscosity 
For the hard-sphere model used here to represent particle-particle collisions, the kinetic theory 

expression for the shear viscosity, t~p, is given by (Hirschfelder et al. 1964) 

5FOtmpkBT'p)½7 ~ {1 + ~$g(~b) + 0.76114~bg($)]2}, [64] 
/~P= 16[_ ~d 2 J g ( $ )  

where dp is the particle diameter and g ($) is the equilibrium radial distribution function evaluated 
at the point of contact of two colliding particles. For large values of the particle volume fraction 
(4 > 0.1), and in the fluidized state of particles, this function may be estimated from the 
Carnahan-Starling equation of state for hard-sphere fluids (Carnahan & Starling, 1969): 

1 - - - -  
2 

g(~) = (1 -- ~b)-------3" [65] 

We note from [64] that there is a spatial variation in the particle-phase shear viscosity 
corresponding to the spatial variation in granular temperature. On the other hand, the derivation 
of the granular temperature profile #oven in the last section was based upon the assumption of 
a uniform viscosity in the thermal boundary layer. Consequently, for estimation of a mean shear 
viscosity in the flow field surrounding a bubble, it is necessary to define a suitable average granular 
temperature. For this estimation purpose, we use the following simple definition of the average: 

which gives, for a spherical bubble, 

" LrbUb~p,l 
and for a circular cylindrical bubble, 

Substitution of [67] 
particle-phase viscosity: 

[661 

(spherical) [67] 

l- ( p)av -] 
(Tp)a, = 23.7 | | (circular cylindrical) [68] 

Lrb Ub ~P,_I 

and [68] into [64], gives the following relationship for the average 

Kp, d2 f g_'~½ [C(_d? )] 2, [691 

where the constant K depends upon the bubble geometry. For a spherical bubble, 

K = 0.075 (spherical) [70] 

and for a circular cylindrical bubble, 

K = 0.067 (circular cylindrical). [71] 

The constant ~ in [69] is the gravitational acceleration constant, and the function C(O) is #oven 
by 

{1 + ~ Og(O) + 0.761[4tOg(O)]2}. [72] C(0) 
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1. Calculated values of the average particle-phase shear viscosity, [69], and effective 
hydrostatic pressure, [77] 

503 

Particle Bubble Particle Solid Shear viscosity (P) Hydrostatic pressure fN/m 2) 
diameter, radius, volume density, 

xdP r b fraction, p, Spherical Cylindrical Spherical Cylindrical 
(m 10 6) (m x 10 2) ~ (kg/m 3) bubble bubble bubble bubble 

200 5 0.55 2500 1.9 1.7 443 348 
200 5 0.6 2500 4.4 3.9 1488 1169 
400 10 0.6 2500 12.4 I 1.0 2955 2325 
400 10 0.6 3000 14.8 13.2 3508 2790 
400 20 0.6 3000 10.5 9.3 1766 1385 

Note that in the derivation of [69], we have also made use of the following relationships for the 
bubble rise velocity: 

Ub = -~ (rbg)½ (spherical) [73] 

and 

Ub = ½ (rb~) ½. (circular cylindrical). [74] 

In table 1, we have listed values of the average particle-phase viscosity, estimated from [69], using 
representative values of the particle diameter, solid density, bubble radius and particle-phase 
volume fraction. It is to be noted that [69] shows the dependence of the effective particle-phase 
viscosity on the bubble geometry, i.e. the bubble size or bubble rise velocity, in addition to the 
system parameters such as particle diameter, particle volume fraction and solid density. This 
dependence on bubble characteristics is explained by the fact that the local "microscopic" particle 
motion and the resultant effective viscosity depend upon the source of perturbation; in this ease 
the motion of the void. 

In table 2, we have compared estimates of the particle-phase shear viscosity based on [69] with 
the estimates of Grace (1970) for the fluidization bubbles studied by Rowe & Partridge (1965). The 
results are presented for small fluldization bubbles only [which meet the criterion of negligible wall 
effects as given by Collins (1967)] in a bed of spherical ballotini particles with a narrow size range. 
Since [69] indicates a bubble-size-dependent viscosity, the results based on this equation are given 
as a range of viscosities for each particle size, corresponding to the range of bubble sizes observed 
in the experiments. The two sets of results show a good order of magnitude agreement. Table 2 
also shows the estimates of particle-phase viscosities by Stewart (1968) and Schfigefl et al. (1961), 
based on the experimental data of Rowe & Partridge (1965). Since these predictions are not 
obtained with respect to bubble motion in an unbounded bed, they cannot be compared with our 
results on a common basis. However, these estimates do predict viscosities in the same range as 
the analytical results. 

4.2. Particle-phase pressure 

The effective hydrostatic particle-phase pressure is related to the granular temperature by the 

Table 2. Particle-phase viscosities associated with single-bubble motion 

Shear viscosities (P) 

Estimated Based on the results 
from bubble of Schfigerl et ai. Calculated 

Particle size, Calculated shapes (1961) (from by Stewart 
dp ~ m )  from [69]  (Grace 1970)  Stewart 1968) (1968) 

550 43.9-52.0 9.5 - -  26 
460 25.9-30.7 - -  12 18 
220 10.0-11.8 8.5 9 8 
170 5.1-6.0 7.5 8 8.5 
140 3.4-4.1 8.0 8 2.5 
120 2.1-2.5 8.5 8 7 
82 0.85-1.0 9.0 6 1.5 
60 0.37-0.44 7.0 4 7.5 

Ballotini particles; bubble size, r b -- 1.4 cm maximum. 
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Table 3. Experimental measurements of  particle-phase pressure (Meissner 
& Kusik 1970) 

Superficial gas velocity Particle-phase pressure 
Bed material (m/s) (N /m 2 ) 

Sand IV" 0.122 539 
Sand IV' 0.143 786 
Sand IV" 0.180 1325 
Iron oxide b 0.293 477 
Iron oxide b 0.323 755 
Iron oxide b 0.390 1294 
Iron oxide b 0.427 1602 
Iron oxide b 0.463 1802 

• Average particle diameter 
0.082 m/s. 

bAverage particle diameter 
0.283 m/s. 

= 280#m, minimum fluidization velocity = 

= 4 2 0 # m ,  minimum fluidization velocity = 

following relationship, resulting from the kinetic theory of dense gases (Hirschfelder et al. 1964): 

6dpkBTp 
pp= rtd3 p [l+4~bg(~b)] [75] 

or, in terms of the dimensionless granular temperature, 

pp = 32- Tp[1 + 4dpg(dp)](dpp, u2). [76] 

Knowing the spatial variation of Tp in the flow field surrounding a bubble, the spatial variation 
of pp and its gradients can be calculated from the above equation for use in the particle-phase 
momentum balance equation (see Appendix A). 

One may also calculate the averge particle-phase pressure in the flow field of a bubble based upon 
the average value of the granular temperature. Combining [75] and [64] an expression for the 
average particle-phase pressure is obtained: 

1 F16(~p)avq2~b[1 + 4Og(q~)] 
P"= L ] [c(#,)] ' [77] 

where (~)a, may be calculated using [69]. We have given representative values of the particle- 
pressure, estimated from [77], in the last two columns of table 1. 

Table 3 shows the experimental measurements of the particle-phase pressure obtained by 
Meissner & Kusik (1970). In these experiments, the particle-phase pressure was determined by 
measuring the reduction in weight of a hollow cylinder when partly submerged in a bubbling 
fluidized bed. Since Meissner & Kusik (1970) performed these measurements in vigorously bubbling 
beds (as evident from the high ratios of superficial gas velocity to minimum fluidization velocity), 
there is no common basis for comparison of these results to our estimates which are applicable 
to the flow field of a single isolated bubble. Nevertheless, there is a remarkable agreement between 
the magnitudes of particle-phase pressure measured experimentally and those calculated here using 
the concept of the granular temperature. 

5. CONCLUSIONS 

The interactions among particles in a perturbed fluid-particle system, such as the flow field 
around a bubble rising in a gas fluidized bed, result in gradients in the mean peculiar kinetic 
energies of the particles. The local mean peculiar kinetic energy of the particles is expressed in terms 
of the "granular temperature" which parallels the thermometric temperature, as defined in the 
kinetic molecular theory. The actual source of energy in the case considered here is from an effective 
particle-phase viscous dissipation term. Here we have considered approximate analytical solutions 
to the resulting energy transport equation, including viscous dissipation terms and as applied to 
the bubble motion problem, at large values of the particle-phase P6clet number (or, equivalently, 
large bubble Reynolds numbers). 

Equations [49] and [62] give the asymptotic solutions for the dimensionless granular temperature 
at large bubble Reynolds number, correct to O(Re-t),  for a spherical bubble and a circular 
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cylindrical bubble, respectively. Since the bubble Reynolds number, defined on the basis of the 
bubble rise velocity and effective particle-phase properties, is typically large in magnitude (~  10 to 
500), the large Reynolds number analysis is of practical interest. Figures 1 and 2 show the radial 
variation of the gran/llar temperature along the 0 = 0 axis and the angular variation at the bubble 
surface, respectively. Expressions from "classical" dense-gas kinetic theory may be used in 
conjunction with the calculated granular temperature to estimate average shear viscosity and 
effective hydrostatic pressure of the particle phase associated with bubble motion. Theoretical 
estimates based upon [69] and [77] are given in table 1 for some representative values of particle 
diameter, bubble size, particle volume fraction and solid density. These values may be compared 
with experimentally determined values of the effective viscosity and pressure, as shown in tables 
2 and 3, respectively. The comparison shows that [69] and [77] predict the particle-phase properties 
to the correct order of magnitude. 

The results obtained here may provide an important predictive tool for the behavior of fluidized 
particles, as the Enskog theory for "hard" spheres may be readily extended to include electrical 
interactions between particles [e.g. Coulombic repulsive and van der Waals' attractive forces (Ely 
& McQuarrie 1974; Stell et al. 1983)]. The ad hoc split of the total particle-phase pressure tensor 
into kinetic and configurational parts, the former of which is estimated from the assumption of 
particle motion in a vacuum, must await proper statistical mechanical formulations for complete 
justification of such approximations. For gas fluidized particles, the relatively large values of the 
particle relaxation time are most probably responsible for the success of the dense-gas kinetic 
theory formalism employed here. 
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A P P E N D I X  A 

The Particle-phase Momentum Conservation Equation and the Applicability of 
Moore's (1963) Solution 

Under steady conditions and assuming a constant solids volume fraction, ~0, in the dense phase 
surrounding the gas bubble, the mass and momentum transport equations can be written as 
follows: 

Gas phase 

Mass conservation 

Momentum conservation 

V . u = 0 .  [A.l] 

- ( 1  - ~o)Vp - f l (~o)(U --  v) = O. [A.21 

Particle phase 

Mass conservation 

V 'v=0 .  

Momentum conservation 

~,0p,(v.V)v = -Vpp + #pV2v + ~0p,g - Vp. 

[A.3] 

[A.4] 

In the above equations u is the local intrinsic-average gas velocity, p is the local intrinsic-average 
gas-phase pressure, pp is the local  vo lume-average  particle-phase pressure and fl(~0) is a 
vo lume-average  drag coefficient. Equations [A.I]-[A.4] are identical to those given by Jackson  
(1963) with the addition of the Newtonian particle-phase stress tensor in [A.4]. 
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We now wish to demonstrate the applicability of Moore's (1963) boundary-layer solution for 
liquid flow around a spherical gas bubble to the particle-phase flow associated with gas-bubble 
motion in a fluidized bed at large bubble Reynolds numbers. 

The boundary conditions for the particle-phase motion can be written as 

and 

v = - i u  b as r ' - - ~ ,  [A.5] 

Vr m 0 at r' = r b [A.6] 

t.[ep-n] ='0 at r '  = r b, [A.7] 

where i is a unit vector in the direction of r' along 0 = 0, Ub is the bubble rise velocity, t and n 
represent unit tangent and unit normal vectors at a given point along the bubble surface and o~ 
is the particle-phase rate-of-strain tensor [6]. Equation [A.5] is a consequence of the convected 
coordinate system necessary for steady-state conditions. Equation [A.7] is the zero tangential stress 
condition which cannot be satisfied by the corresponding potential flow solutions. Writing the 
particle-phase momentum equations in axisymmetric spherical coordinates, the r and 0 components 
can be combined to eliminate the pressure and gravitational terms. Written in terms of the 
particle-phase stream function ~, and in dimensionless form, the resulting equation is 

where # = cos 0, R e -  - -  

and 

l ~(q,, D,~,) 2 
r: O(r,#) ~'_D2~/Lrd/=-Re-'D4'~' [A.8] 

rbub~ps 
#p 

1 - :  
~- 0-/~-2 ) [A.91 

L ,=  1 #2at r~#J"  

In terms of the stream function ~/, the boundary conditions become 

and 

[A.10] 

~ = ½ r 2 ( l - #  2) as r ~ ,  [A.II] 

= 0 at r = 1, [A.12] 

o r 2 ~#2 t-~-~r: r ~ r ]  at r = l  [A.I3] 

~/~a--~-~ =0 at #=1. [A.14] 
Or 

The last condition accounts for the zero tangential velocity along the vertical axis of symmetry. 
Equations [A.8]-[A.14] are precisely those considered by Moore (1963) in his boundary-layer 

analysis of gas-bubble motion in a liquid at large bubble Reynolds number, Re. In terms of the 
stream function, and to first order in Re -~, Moore's composite solution can be written as 

0 - - ~  r -  s i n 2 0 - R e  -I (z ,O),  [A.151 

where 
/. 

0} 1) (z, 0) -- - 12zsin20 "lj/2x'f(t) dt,  [A.161 

f ( t )  ffi n-½exp( -  t 2) - t effc(t) [A.17] 
and 

x(O) = ~ cosec40 ( ~ -  cos0 + ~ cos30). [A.IS] 
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The corresponding radial and tangential velocity fields are obtained from the definition of the 
stream function as 

where 

a n d  

where 

II,= - ( 1 - ~ 3 ) c o s 0  + R e  -~ V~) [(r - l) Re½, 0], 

1 

V~l)(z,O)=2zz-½(6)~ cos0--  1)f  z --8(3Z cos0--  1) f ( t ) d t  

(1) 
Vo= 1 + ~ r  3 sin0 +Re-½ V[ ' ) [ ( r -  l)Re½,0], 

V~')(z,O) = - 6 sin 0 z½f(2-~Z ) .  

The solutions for a circular cylindrical bubble are given in Nadkarni (1985). 

[A.19] 

[A.20] 

[A.21] 

[A.22] 

APPENDIX B 

Solution of  [33] 

For convenience [33] is rewritten below: 

0ZT * 0T* 3 0T* z dS 
--ctz2 + 3z cos0--Oz -~sin0---ffff- - 8 1 P r  ~-z (1 - c o s 0 ) -  18Pr sin20 =0 .  

The boundary conditions are given by [37]-[39]: 

and 

Let 

OT* 
- -  = 0 a t  z = 0, 

Oz 

T * ~ O  as z ~ o o  

T * = 0  a t  0 = 0 .  

where the term 

dS 
A (z)  = Z 

dS 
dz 

is obtained by a one-step integration of [34] with the boundary condition [35], giving 

dS .If 3 (z2 Z .2) dz* -~z= - e x p [ - 3 .  - ] • 

By defining 

= z sin20 

and transforming lB.1] from (z, 0) space to (~, 0) space, we obtain 

sin O-zTv., - ~ sinO - 8 1  (1 - cosO)f~ - 18 sin20 = 0 ,  

[8.i] 

[B.2] 

[B.3] 

[B .4 ]  

[8.5] 

[8.6] 

[8.7] 

[s.8] 
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where 

Let 

T*(z, O) 
F(~, O) = - -  [B.9] 

Pr 

H (~, O) = Fc[F(¢, 0)], [B. 10] 

where the operator Fc denotes the Fourier cosine transform operator and ~ is the transform 
variable. Carrying out the Fourier cosine transform of each term of lB.8] and using the identity 

/'t~2 T * \  

= -~2H (applying boundary condition [B.2]), [B.12] 

we obtain the following equation: 

sin40(-ct2H)-3sinO~--~-81 ( 1 - c o s O ) F c [ f . ( s i ~ ) ] - 1 8  sin20 = 0  [B.13] 

which gives, upon rearrangement, 

aH 2 2sin0)H=3 _ 5 4  ( 1 - c ° s 0 ) - F - / '  ~ '~-] "opbi- )j 
The solution of [B.14] may be written at once as 

-- cos t ¢ 2 H(°t'O)=exp[-]~2f(O)]{-54 f f  ( 1 sint )F¢[f'(s~n2t)]exp~2f(t)]dt 

fo } - 12 sin t e×p[~eef(t)]dt , 
0 

where 

and 

where 

f(t) = _1o sinat* dt* 

= ~ -  ~cos t + ~cos3t  

F¢[fl(s~n2 t)l----- (2)½ f: {si~2 t 
x f ~ e x p [ - ~ ( ~  - z*2)ldz*}cos(~)dz 

1 2½ 
- s~n4t(-~)G(~,t), 

/ sin',  J yf cos(0~x)dx. 

Substituting [B. 18] into lB.14], we obtain 

sin't ,] G(~, t) exp{ - ]~2[f(0) - f ( t ) ] }  dt 

- 12 f~ sin t exp { - ] ~2[f(0) - f(t)]} dr. 

[B.14] 

[B.15] 

lB.16] 

[B.17] 

[ B . 1 8 ]  

[B.19] 

[B.20] 

[B.21] 
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The function F(~, 0) is obtained by taking the inverse cosine transform of the above equation, 
which gives 

F(~'o)= lOS fo°°[f~ (l --c°st'~t ~ot 2 [f(O)- f(t)]} dt 1 - sin5 t /G(ct, t)exp{-- cos (~ )  d~ 

-12(2)l/2fo°°Iffsintexp{-2~2[f(O)-f(t)]}dt]cos(~¢)d~. [B.22] 

Changing the order of integration and simplifying the second term on the r.h.s, further, we obtain 

f~ [A2(~, O, t) + AI(~, O, t)] dt, [B.23] F(~, 0) 

where the functions AI (~, 0, t) and A2(~, 0, t) are given by [44] and [45], respectively. 


